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Abstract

In this investigation, the in-plane vibration problems are solved for plates with general elastically restrained boundary

conditions. Under the current framework, all the classical homogeneous boundary condition for in-plane displacements

can be easily simulated by simply setting the stiffnesses of the restraining springs to either infinite or zero. The vibration

problems are solved using an improved Fourier series method in which the in-plane displacements are expressed as the

superposition of a double Fourier cosine series and four supplementary functions in the form of the product of a

polynomial function and a single cosine series expansion. The use of these supplementary functions is to overcome the

discontinuity problems which the original displacement functions will potentially encounter along the edges when they are

viewed as a periodic function defined over the entire x–y plane. The excellent accuracy and convergence of the current

solution are demonstrated through numerical examples. To the best of authors’ knowledge, this work represents the first

time that an analytical solution has been obtained for the in-plane vibrations of a rectangular plate with elastically

restrained edges.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that a vibrating flat plate can exhibit three types of waveforms: bending, longitudinal
and shear. Of these three wave groups, bending is often referred to as the out-of-plane vibration, and
longitudinal and shear waves as the in-plane vibrations [1]. The transverse bending vibrations of plates have
received much attention in the literature, and a huge amount of results have been published regarding the
vibrations and modal characteristics of plates with various structural features and/or boundary conditions
[2,3]. Probably because of the fact that the modes related to in-plane vibrations typically fall outside the
dominant frequency bands of excitations, the in-plane vibration problems are far less studied as evidenced by
few publications available in the literature. In certain engineering applications, however, the in-plane and
flexural vibrations need to be taken into consideration altogether. Some studies have shown that in-plane
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a length of a plate
b width of a plate
cL longitudinal wave speed in the plate

ðcL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1� m2Þ

p
Þ

E Young’s modulus
k stiffness of the restraining springs
K stiffness matrix
K non-dimensional stiffness

ðK ¼ kað1� m2Þ=EÞ

M mass matrix
r1 plate aspect ratio (r1 ¼ a/b)
r2 inverse of plate aspect ratio (r2 ¼ b/a)

u(x,y) in-plane displacement component in the
x-direction

v(x,y) in-plane displacement component in the
y-direction

dmn Kronecher delta function
lam (lam ¼ mp/a)
lbn (lbn ¼ np/b)
m Poisson’s ratio
r mass density of plate material
sx,sy in-plane normal stresses
txy in-plane shear stress
o angular frequency
O dimensionless frequency

ðO ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
Þ
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vibrations can play a major role for the transmissions of high-frequency vibration energies in build-up
structures [1,4,5]. However, the importance of in-plane vibrations should not be only understood in context of
the high-frequency vibrations or energy transmissions; they can meaningfully affect the low-frequency
vibrations as well. When two plates are connected at an angle along an edge, the in-plane and out-of-
plane displacements are directly coupled together in the form of kinematic constraints and/or kinetic
equations. Although the coupling terms may be of secondary interest and usually ignored in the governing
differential equations, the same cannot be said about them in regards to the boundary condition equations.
For instance, when two plates are connected together perpendicularly, the substantial resistance to both
flexural deflections at the junction cannot be properly captured without considering the in-plane modes
even though their natural frequencies are outside (or far above) the frequency range of concern. There can
also be a direct correlation between the in-plane vibrations and the noise radiated into the immediate
environment [6]. The in-plane vibrations may also have an important implication to the non-destructive
evaluation of the model parameters and failure modes of composite and sandwich plates as will be explained
later.

Most existing studies on the free in-plane vibrations of rectangular plates are limited to the classical
homogeneous boundary conditions. To the best of authors’ knowledge, there is no work reported in the open
literature about the free in-plane vibrations of rectangular plates with elastically restrained edges. Recently, Li
[7] proposed a Fourier series method for the vibration analysis of arbitrarily supported beams. The flexural
displacement of the beam is sought as the linear combination of a Fourier series and an auxiliary polynomial
function. Subsequently, this method is extended to the flexural vibrations of rectangular plates under general
boundary conditions [8]. It has been shown that this solution method works very well for plates with various
edge supports.

The objective of this investigation is to extend the aforementioned Fourier series method to the in-plane
vibrations of rectangular plates with general elastically restrained edges. From solution point of view,
the current method is meaningfully different from the previous ones in that the plate displacements
now exactly satisfy both the governing differential equations and the boundary conditions, rather than
in a weak (variational) sense as the Rayleigh-Ritz solutions do. Theoretically, this notion is of fundamental
importance because it has been widely accepted that there is no exact solution for a rectangular plate
with general boundary conditions. Another significant distinction is that the in-plane wave field involves
two coupled displacement variables in contrast to the flexural field described only by one single variable,
thus leading to a more complicated boundary value problem to solve. Sufficient details are presented
regarding how the solution is derived for a rectangular plate with elastically restrained edges. Finally,
several numerical examples are solved to demonstrate the excellent accuracy and convergence of the current
solution.
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2. Theoretical formulations

2.1. Boundary conditions for an elastically restrained plate

In the study of transverse vibration of a thin rectangular plate, the general boundary conditions can be
specified in terms of two kinds of springs (rotational and linear springs) attached to each edge. As a result, all
the classical boundary conditions can be readily obtained by accordingly setting the spring constants equal to
an extremely large or small number [8]. Similarly, the general boundary conditions for the in-plane
displacements can be represented by two sets of linear springs along each edge, as illustrated in Fig. 1. When
the stiffness for both sets of springs along an edge becomes infinitely large, that edge is essentially clamped.
The free edge condition can be simply obtained by setting stiffnesses for these two sets springs to zero. There
are two types of simply supported boundary conditions for the in-plane vibration problems. One is that on a
given edge the displacement parallel to it is fully restrained while the normal displacement is completely free,
which is equivalent to specifying the infinite stiffness for the tangential springs, and zero stiffness for the
normal springs. The other represents an opposite situation involving infinitely rigid normal springs, and
extremely soft tangential springs. These two edge conditions are referred to as the first type (SS1) and the
second type (SS2) simply supported boundary conditions [6], respectively.

According to the plane stress theory in elasticity, the normal and shear stresses can be written as

sx ¼
E

1� m2
qu

qx
þ m

qv

qy

� �
, (1)

sy ¼
E

1� m2
m
qu

qx
þ

qv

qy

� �
(2)

and

txy ¼
E

1� m2
1� m
2

qu

qy
þ

qv

qx

� �
, (3)

where u and v are the in-plane displacements in the x- and y-direction, respectively; E and m are the Young’s
modulus and Poisson’s ratio of the plate material, respectively (a list of symbols is given in the Nomenclature).

The boundary conditions for elastically restrained edges are as follows:

knx0u ¼
qu

qx
þ m

qv

qy
; Kpx0v ¼

qu

qy
þ

qv

qx
at x ¼ 0, (4,5)

knx1u ¼ �
qu

qx
þ m

qv

qy

� �
; Kpx1v ¼ �

qu

qy
þ

qv

qx

� �
at x ¼ a, (6,7)
ax

y

b

Fig. 1. A rectangular plate with elastic edge supports for in-plane vibration.
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kny0v ¼ m
qu

qx
þ

qv

qy
; Kpy0u ¼

qu

qy
þ

qv

qx
at y ¼ 0 (8,9)

and

kny1v ¼ � m
qu

qx
þ

qv

qy

� �
; Kpy1u ¼ �

qu

qy
þ

qv

qx

� �
at y ¼ b, (10,11)

where k ¼ kð1� m2Þ=E and K ¼ 2k=ð1� mÞ with k being the stiffness of the restraining springs. The subscripts
with k̄ and K indicate the direction and location of the corresponding springs. For example, knx0 and kpx1

present the stiffness for the normal springs along the edge x ¼ 0 and the stiffness for the tangential springs at
x ¼ a, respectively. As mentioned earlier, all classical homogeneous boundary conditions can be easily derived
by simply setting each of the spring stiffnesses to be an extremely large or small number.

For in-plane vibration problems, there involve two independent field variables which can be conveniently
chosen as the displacements in x- and y-direction. In this study, these displacements are expressed in form of
Fourier series expansions:

uðx; yÞ ¼
X1
m¼0

X1
n¼0

Amn cos lamx cos lbny

þ x1bðyÞ
X1
m¼0

am cos lamxþ x2bðyÞ
X1
m¼0

bm cos lamx

þ x1aðxÞ
X1
n¼0

cn cos lbnyþ x2aðxÞ
X1
n¼0

dn cos lbny ð12Þ

and

vðx; yÞ ¼
X1
m¼0

X1
n¼0

Bmn cos lamx cos lbny

þ x1bðyÞ
X1
m¼0

em cos lamxþ x2bðyÞ
X1
m¼0

f m cos lamx

þ x1aðxÞ
X1
n¼0

gn cos lbnyþ x2aðxÞ
X1
n¼0

hn cos lbny, ð13Þ

where lam ¼ mp/a, lbn ¼ np/b, and

x1aðxÞ ¼ azxðzx � 1Þ2; x2aðxÞ ¼ az2xðzx � 1Þ ðzx ¼ x=aÞ, (14a,b)

x1bðyÞ ¼ bzyðzy � 1Þ2 and x2bðyÞ ¼ bz2yðzy � 1Þ ðzy ¼ y=bÞ. (15a,b)

It is easy to verify that

x1að0Þ ¼ x1aðaÞ ¼ x01aðaÞ ¼ 0; x01að0Þ ¼ 1, (16a,b)

x2að0Þ ¼ x2aðaÞ ¼ x02að0Þ ¼ 0; x02aðaÞ ¼ 1. (17a,b)

Similar conditions exist for the y-related polynomials, x1b(y) and x2b(y). It should be noted that the
satisfaction of Eqs. (16) and (17) is not inherently required by the current method; such conditions are
imposed purely for the sake of simplifying the subsequent mathematical expressions and the corresponding
solution procedures. For instance, as easily seen from Eq. (18), the number of terms can be significantly
reduced in the final representations of the boundary conditions.

One shall notice from Eqs. (12) and (13) that besides the standard double Fourier series defined over the
domain R2:((0,a)�(0,b)), four single Fourier series are also included in each of the displacement expressions.
In light of Eqs. (16a) and (16b), it is not difficult to see that the fourth term (or the third single Fourier series
term) on the right-side of Eq. (12) is actually equal to the derivative (with respect to x) of the displace-
ment function u(x,y) at edge x ¼ 0. In other words, the potential discontinuity (or jump) associated with the
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x-derivative of the original displacement u(x,y) at x ¼ 0 is effectively transferred onto the supplementary term.
As a result, the residual displacement represented by the double Fourier series expansion is guaranteed to have
a continuous derivative across the edge x ¼ 0 when it is periodically extended onto the entire x-axis. In the
same way, three additional single Fourier terms are introduced to deal with the possible derivative jumps
along the other three edges. Therefore, not only is this Fourier series representation of solution applicable to
any boundary conditions, but also the convergence of the series expansion can be substantially improved and
guaranteed to a speed of, at least, (mp)3.

Substituting Eqs. (12) and (13) into the boundary conditions, for example, at x ¼ 0, one will have

knx0

X1
m¼0

X1
n¼0

Amn cos lbnyþ x1bðyÞ
X1
m¼0

am þ x2bðyÞ
X1
m¼0

bm

 !

¼
X1
n¼0

cn cos lbnyþ m
X1
m¼0

X1
n¼0

�Bmnlbn sin lbnyþ x01bðyÞ
X1
m¼0

em þ x02bðyÞ
X1
m¼0

f m

 !
ð18Þ

and

Kpx0

X1
m¼0

X1
n¼0

Bmn cos lbnyþ x1bðyÞ
X1
m¼0

em þ x2bðyÞ
X1
m¼0

f m

 !

¼ �
X1
m¼0

X1
n¼0

Amnlbn sin lbnyþ x01bðyÞ
X1
m¼0

am þ x02bðyÞ
X1
m¼0

bm þ
X1
n¼0

gn cos lbny. ð19Þ

In order to derive the constraint equations for the unknown Fourier coefficients, all the sine terms, and the
polynomials and their derivatives in Eq. (18) will be expanded into Fourier cosine series. The related formulas
are provided in Appendix A. By collecting the coefficients for the like cosine terms, one can eventually obtain
the following equations:

� knx0b1n

X1
m¼0

am � knx0b2n

X1
m¼0

bm þ cn þ mZ1n

X1
m¼0

em þ mZ2n

X1
m¼0

f m

¼ knx0

X1
m¼0

Amn þ m
X
m;q

Bmqlbqk
q
bn ðn ¼ 0; 1; 2; . . .Þ. ð20Þ

Similarly, the substitution of Eqs. (12) and (13) into the remaining boundary conditions will lead to seven
additional equations. Thus, a total of eight constraint equations can be derived as

am � Kpy0a1m

X1
n¼0

cn � Kpy0a2m

X1
n¼0

dn þ g1m

X1
n¼0

gn þ g2m

X1
n¼0

hn

¼
X1
n¼0

Kpy0Amn þ
X
p;n

Bpnlaptp
am ðm ¼ 0; 1; 2; . . .Þ, ð21Þ

bm þ Kpy1a1m

X1
n¼0

ð�1Þncn þ Kpy1a2m

X1
n¼0

ð�1Þndn þ g1m

X1
n¼0

ð�1Þngn

þ g2m

X1
n¼0

ð�1Þnhn ¼ �Kpy1

X1
n¼0

ð�1ÞnAmn þ
X
p;n

Bpnð�1Þ
nlaptp

am ðm ¼ 0; 1; 2; . . .Þ, ð22Þ

� knx0b1n

X1
m¼0

am � knx0b2n

X1
m¼0

bm þ cn þ mZ1n

X1
m¼0

em þ mZ2n

X1
m¼0

f m

¼ knx0

X1
m¼0

Amn þ m
X
m;q

Bmqlbqk
q
bn ðn ¼ 0; 1; 2; . . .Þ, ð23Þ
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knx1b1n

X1
m¼0

ð�1Þmam þ knx1b2n

X1
m¼0

ð�1Þmbm þ dn þ mZ1n

X1
m¼0

ð�1Þmem þ mZ2n

X1
m¼0

ð�1Þmf m

¼ �knx1

X1
m¼0

ð�1ÞmAmn þ m
X
m;q

Bmqð�1Þ
mlbqk

q
bn ðn ¼ 0; 1; 2; . . .Þ, ð24Þ

mg1m

X1
n¼0

cn þ mg2m

X1
n¼0

dn þ em � kny0a1m

X1
n¼0

gn � kny0a2m

X1
n¼0

hn

¼ m
X
p;n

Apnlaptp
am þ kny0

X1
n¼0

Bmn ðm ¼ 0; 1; 2; . . .Þ, ð25Þ

mg1m

X1
n¼0

ð�1Þncn þ mg2m

X1
n¼0

ð�1Þndn þ f m þ kny1a1m

X1
n¼0

ð�1Þngn

þ kny1a2m

X1
n¼0

ð�1Þnhn ¼ m
X
p;n

Apnð�1Þ
nlaptp

am � kny1

X1
n¼0

ð�1ÞnBmn ðm ¼ 0; 1; 2; . . .Þ, ð26Þ

Z1n

X1
m¼0

am þ Z2n

X1
m¼0

bm � Kpx0b1n

X1
m¼0

em � Kpx0b2n

X1
m¼0

f m þ gn

¼
X1
m;q

Amqlbqk
q
bn þ Kpx0

X1
m¼0

Bmn ðn ¼ 0; 1; 2; . . .Þ, ð27Þ

Z1n

X1
m¼0

ð�1Þmam þ Z2n

X1
m¼0

ð�1Þmbm þ Kpx1b1n

X1
m¼0

ð�1Þmem þ hn þ Kpx1b2n

X1
m¼0

ð�1Þmf m

¼
X
m;q

Amqð�1Þ
mlbqk

q
bn � Kpx1

X1
m¼0

ð�1ÞmBmn ðn ¼ 0; 1; 2; . . .Þ. ð28Þ

It is clear from the above equations that the expansion coefficients, am, bm, cn, dn, em, fm, gn and hn (m,
n ¼ 0,1,2,y), in the single Fourier series are not independent unknowns; they are actually dependent upon the
expansion coefficients, Amn and Bmn, of the double Fourier series. When all the series expansions are truncated
to m ¼M and n ¼ N in numerical calculations, Eqs. (21)–(28) can be rewritten in matrix form as

HP ¼ QC, (29)

where

P ¼ a0; . . . ; aM ; b0; . . . ; bM ; c0; . . . ; cN ; d0 . . . ; dN ; e0 . . . ; eM ; f 0; . . . ; f M ; g0; . . . gN ; h0; . . . ; hN

� �T
, (30)

C ¼ CT
1 CT

2

h iT
, (31)

C1 ¼ A00;A01; . . . ;Am00;Am01; . . . ;Am0n0 ; . . . ;AMNf gT, (32)

C2 ¼ B00;B01; . . . ;Bm00;Bm01; . . . ;Bm0n0 ; . . . ;BMNf gT (33)
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H ¼

a11 b12 c13 d14 e15 f16 g17 h18

a21 b22 c23 d24 e25 f26 g27 h28

a31 b32 c33 d34 e35 f36 g37 h38

a41 b42 c43 d44 e45 f46 g47 h48

a51 b52 c53 d54 e55 f56 g57 h58

a61 b62 c63 d64 e65 f66 g67 h68

a71 b72 c73 d74 e75 f76 g77 h78

a81 b82 c83 d84 e85 f86 g87 h88

2
666666666666664

3
777777777777775

(34)

and

Q ¼
qT11 qT21 qT31 qT41 qT51 qT61 qT71 qT81

qT12 qT22 qT32 qT42 qT52 qT62 qT72 qT82

" #T
. (35)

The elements of the matrices H and Q can be directly determined from Eqs. (21)–(28), as demonstrated in
Appendix B.
2.2. Solving the governing differential equations

The governing differential equations for the free in-plane vibration of a plate can be written as

q2u
qx2
þ

1

2
ð1� mÞ

q2u

qy2
þ

1

2
ð1þ mÞ

q2v

qx qy
þ

1

c2L
o2u ¼ 0 (36)

and

q2v

qy2
þ

1

2
ð1� mÞ

q2v
qx2
þ

1

2
ð1þ mÞ

q2u

qx qy
þ

1

c2L
o2v ¼ 0, (37)

where u and v are the displacements in the x- and y-direction, respectively, cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1� m2Þ

p
is the

longitudinal wave speed in the plate, and o is the angular frequency.
Substituting Eqs. (12) and (13) into (36) and (37) will lead to the following two equations:

�
X1
m¼0

X1
n¼0

Amnl
2
am cos lamx cos lbnyþ x001aðxÞ

X1
n¼0

cn cos lbnyþ x002aðxÞ
X1
n¼0

dn cos lbny

� x1bðyÞ
X1
m¼0

aml
2
am cos lamx� x2bðyÞ

X1
m¼0

bml
2
am cos lamx

þ
1� m
2
�
X1
m¼0

X1
n¼0

Amnl
2
bn cos lamx cos lbny

"
þ x001bðyÞ

X1
m¼0

am cos lamx

þ x002bðyÞ
X1
m¼0

bm cos lamx�x1aðxÞ
X1
n¼0

cnl
2
bn cos lbny� x2aðxÞ

X1
n¼0

dnl
2
bn cos lbny

#

þ
1þ m
2

X1
m¼0

X1
n¼0

Bmnlamlbn sin lamx sin lbny

"
� x01bðyÞ

X1
m¼0

emlam sin lamx

� x02bðyÞ
X1
m¼0

f mlam sin lamx�x01aðxÞ
X1
n¼0

gnlbn sin lbny� x02aðxÞ
X1
n¼0

hnlbn sin lbny

#
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þ
1

c2L
o2

X1
m¼0

X1
n¼0

Amn cos lamx cos lbny

"
þ x1bðyÞ

X1
m¼0

am cos lamx

þ x2bðyÞ
X1
m¼0

bm cos lamxþx1aðxÞ
X1
n¼0

cn cos lbnyþ x2aðxÞ
X1
n¼0

dn cos lbny

#
¼ 0 ð38Þ

and

�
X1
m¼0

X1
n¼0

Bmnl
2
bn cos lamx cos lbnyþ x001bðyÞ

X1
m¼0

em cos lamxþ x002bðyÞ
X1
m¼0

f m cos lamx

� x1aðxÞ
X1
n¼0

gnl
2
bn cos lbny� x2aðxÞ

X1
n¼0

hnl
2
bn cos lbny

þ
1� m
2
�
X1
m¼0

X1
n¼0

Bmnl
2
am cos lamx cos lbny

"
� x1bðyÞ

X1
m¼0

eml
2
am cos lamx

� x2bðyÞ
X1
m¼0

f ml
2
am cos lamxþx001aðxÞ

X1
n¼0

gn cos lbnyþ x002aðxÞ
X1
n¼0

hn cos lbny

#

þ
1þ m
2

X1
m¼0

X1
n¼0

Amnlamlbn sin lamx sin lbny

"
� x01bðyÞ

X1
m¼0

amlam sin lamx

� x02bðyÞ
X1
m¼0

bmlam sin lamx�x01aðxÞ
X1
n¼0

cnlbn sin lbny� x02aðxÞ
X1
n¼0

dnlbn sin lbny

#

þ
1

c2L
o2

X1
m¼0

X1
n¼0

Bmn cos lamx cos lbny

"
þ x1bðyÞ

X1
m¼0

em cos lamx

þ x2bðyÞ
X1
m¼0

f m cos lamxþx1aðxÞ
X1
n¼0

gn cos lbnyþ x2aðxÞ
X1
n¼0

hn cos lbny

#
¼ 0. ð39Þ

In order to solve for the unknown expansion coefficients, the polynomial and sine functions will all be
expanded into Fourier cosine series. It needs to be pointed out that all the derivatives of the polynomials must
be independently expanded into Fourier series, instead of taking a ‘‘short-cut’’ by differentiating the parent
series expansions term-by-term. By doing such, Eqs. (38) and (39) can be finally reduced to

l2am þ
1� m
2

l2bn

� �
Amn þ b1nl

2
am �

1� m
2

s1n

� �
am þ b2nl

2
am �

1� m
2

s2n

� �
bm

þ
1� m
2

a1ml
2
bn � �1m

� �
cn þ

1� m
2

a2ml
2
bn � �2m

� �
dn

�
1þ m
2

X
p

X
q

Bpqlaplbqtp
amk

q
bn

þ
1þ m
2

X
p

epZ1nlaptp
am þ

1þ m
2

X
p

f pZ2nlaptp
am

þ
1þ m
2

X
q

gqg1mlbqk
q
bn þ

1þ m
2

X
q

hqg2mlbqk
q
bn

�
1

c2L
o2ðAmn þ amb1n þ bmb2n þ a1mcn þ a2mdnÞ ¼ 0 ð40Þ
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and

l2bn þ
1� m
2

l2am

� �
Bmn þ

1� m
2

l2amb1n � s1n

� �
em þ

1� m
2

l2amb2n � s2n

� �
f m

þ a1ml
2
bn �

1� m
2

�1m

� �
gn þ a2ml

2
bn �

1� m
2

�2m

� �
hn

�
1þ m
2

X
p

X
q

Apqlaplbqtp
amk

q
bn

þ
1þ m
2

X
p

apZ1nlaptp
am þ

1þ m
2

X
p

bpZ2nlaptp
am

þ
1þ m
2

X
q

cqg1mlbqk
q
bn þ

1þ m
2

X
q

dqg2mlbqk
q
bn

�
1

c2L
o2ðBmn þ emb1n þ f mb2n þ a1mgn þ a2mhnÞ ¼ 0 ð41Þ

or, in matrix form

A11 A12

A21 A22

" #
Cþ

B11 B12

B21 B22

" #
P�

o2

c2L

E11 E12

E21 E22

" #
Cþ

F11 F12

F21 F22

" #
P

( )
¼ 0. (42)

Representative expressions for these coefficient matrices can be found in Appendix B.
Making use of Eq. (29), the final system equations can be obtained as

K�
o2

c2L
M

� �
C ¼ 0, (43)

where K ¼ A+BH�1Q and M ¼ E+FH�1Q.
The natural frequencies and eigenvectors can now be easily and systematically determined from solving a

standard matrix eigenproblem. Each of the eigenvectors actually contains the Fourier coefficients for the
corresponding modes. The physical mode shapes can be simply obtained using Eqs. (12), (13) and (29). When
the response to an applied excitation is desired, one needs to simply add a force term to the right-hand side of
Eq. (43). Of course, the components of the force vector now represent the projections of the actual physical
forces onto the Fourier functional space, a familiar procedure as used in the modal superposition method.

3. Results and discussions

Several examples involving different boundary conditions have been solved in this section. First, consider a
plate clamped along all edges. A clamped edge for in-plane vibration can be viewed as a special case when the
stiffnesses for the (normal and tangential) boundary springs become infinitely large which is actually
represented by non-dimensional stiffness 4500 in the following numerical calculations. In Table 1, the first six
non-dimensional frequency parameters, O ¼ oa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, are shown for the plates of various aspect

ratios. The results compare very well with those obtained from the Rayleigh-Ritz energy method [9]. In the
current calculations, both displacement expansions have been truncated equally to include only the first
(M+1)� (N+1) terms corresponding to m ¼ 0,1,2,y,M and n ¼ 0,1,2,y,N. However, it should be
mentioned that in the cases where, for instance, involve plates with large aspect ratios, it may be more efficient
to truncate the displacement expansions differently to account for the possibly different wave behaviors in the
x- and y-direction. The frequency parameters given in Table 1 are calculated by setting M ¼ N ¼ 12. To check
the convergence of the solution, Table 2 shows the frequencies (for b/a ¼ 1) determined by using different
numbers of the expansion terms, M ¼ N ¼ 4,5,6,7,8,9,10,11,12,13,14,15. A desired convergence characteristic
is observed in regards to: (a) sufficiently accurate results with only a small number of terms in the expansions,
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Table 1

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for C-C-C-C plates of different aspect ratios

r1 ¼ a/b O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 3.554 (3.555a) 3.554 (3.555) 4.236 (4.235) 5.185 (5.186) 5.859 (5.859) 5.896 (5.895)

1.5 4.112 4.923 5.402 6.564 6.602 6.617

2.0 4.788 (4.789) 6.374 (6.379) 6.710 (6.712) 7.048 (7.049) 7.608 (7.608) 8.140 (8.140)

2.5 5.538 7.590 7.868 8.097 8.773 9.568

3.0 6.336 8.195 9.385 9.532 10.05 10.54

aResults in parentheses are taken from Ref. [9].

Table 2

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for a C-C-C-C square plate

M ¼ N O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

4 3.561 3.561 4.273 5.213 5.927 5.952

5 3.559 3.559 4.246 5.206 5.881 5.947

6 3.556 3.556 4.245 5.193 5.877 5.912

7 3.556 3.556 4.239 5.192 5.866 5.911

8 3.555 3.555 4.239 5.188 5.865 5.902

9 3.555 3.555 4.237 5.188 5.861 5.901

10 3.554 3.554 4.237 5.186 5.861 5.898

11 3.554 3.554 4.236 5.186 5.859 5.898

12 3.554 3.554 4.236 5.185 5.859 5.896

13 3.554 3.554 4.235 5.185 5.858 5.896

14 3.554 3.554 4.235 5.185 5.858 5.895

15 3.554 3.554 4.235 5.185 5.857 5.895

Table 3

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for F-F-F-F plates of different aspect ratios

r1 ¼ a/b O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 2.321 (2.321a) 2.472 (2.472) 2.472 (2.472) 2.629 (2.628) 2.988 (2.987) 3.452 (3.452)

1.5 2.197 2.881 2.915 3.938 3.971 4.380

2.0 1.954 (1.954) 2.961 (2.961) 3.268 (3.267) 4.725 (4.726) 4.785 (4.784) 5.205 (5.205)

2.5 1.747 2.976 3.337 4.969 5.169 5.683

3.0 1.571 2.983 3.224 4.951 5.754 5.830

aResults in parentheses are taken from Ref. [9].
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and (b) a consistent improvement of the solution as more terms are included in the calculations (that is, the
solution scheme is numerically stable). In view of the excellent numerical behavior of the current solution, the
setting M ¼ N ¼ 12 will be used in all the subsequent calculations.

The next example is also about a classical case: a completely free plate. The free edge condition is equivalent
to setting the stiffnesses for both the normal and tangential springs to zero. The six smallest frequency
parameters, O ¼ oa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, are listed in Table 3 for various plate aspect ratios. The results from

Ref. [9] are also shown there as a comparison. A good agreement is observed between these two sets of solutions.
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Table 4

Natural frequencies of in-plane vibration of a rectangular plate with C-C-C-F boundary conditions

Mode no. NASTRANa Present Ref. [10] Ref. [11]

Frequency (Hz) Frequency (Hz) Error (%) Frequency (Hz) Error (%) Frequency (Hz) Error (%)

1 1803 1802 0.06 1811 0.4 1892 4.9

2 2656 2657 0.04 2674 0.7 2727 2.7

3 2794 2800 0.21 2845 1.8 3026 8.4

4 3392 3402 0.29 3524 3.9 3596 6.0

5 3479 3492 0.37 3504 0.7 3624 4.2

6 3704 3730 0.70 3757 1.4 3868 4.4

aNASTRAN results are taken from Ref. [11].

Table 5

Natural frequencies of in-plane vibration of a rectangular plate with C-F-C-F boundary conditions

Mode no. NASTRANa Present Ref. [10] Ref. [11]

Frequency (Hz) Frequency (Hz) Error (%) Frequency (Hz) Error (%) Frequency (Hz) Error (%)

1 1449 1445 0.28 1455 0.4 1531 7

2 2511 2514 0.12 2520 0.4 2682 6

3 2567 2566 0.04 2639 2.8 2697 5

4 2637 2642 0.19 2662 0.95 2994 12

5 3037 3037 0 3187 4.5 3122 3

6 3061 3073 0.39 3146 2.8 3390 10

aNASTRAN results are taken from Ref. [11].

Table 6

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for SS1-SS1-SS1-SS1 plates of different aspect ratios

r1 ¼ a/b O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 1.858 (1.859a) 1.858 (1.859) 2.629 (2.628) 3.718 (3.717) 3.718 (3.717) 4.157 (4.156)

1.5 1.858 2.787 3.351 3.718 4.647 5.576

2.0 1.858 (1.859) 3.716 (3.717) 3.718 (3.717) 4.155 (4.156) 5.258 (5.257) 5.577 (5.576)

2.5 1.858 3.717 4.645 5.003 5.577 5.951

3.0 1.858 3.717 5.573 5.577 5.875 6.701

aResults in parentheses are taken from Ref. [9].

Table 7

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for SS1-F-SS1-F plates of different aspect ratios

r2 ¼ b/a O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 1.408 1.858 2.629 3.249 3.364 3.499

(1.408a) – – (3.248) (3.364) (3.498)

1.25 1.487 1.497 2.313 2.974 3.194 3.223

– (1.497) (2.312) – (3.194) (3.222)

1.5 1.239 1.556 2.091 2.478 3.004 3.136

– (1.556) (2.092) – (3.004) (3.138)

2.0 0.929 1.624 1.858 1.866 2.629 2.788

– (1.624) – (1.866) – –

aResults in parentheses are taken from Ref. [6].
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Next, consider two cases that involve the mixed combinations of the clamped and free edge conditions along the
plate edges. These two types of problems are studied in Refs. [10,11]. In order to compare with their results, the
model parameters including the plate aspect ratio and material properties are kept the same here. Plate dimensions
are 1.0m in length, 1.2m in width, and 2.5mm in thickness. Young’s modulus is E ¼ 70� 109N/m2 and density is
Table 8

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for SS1-C-SS1-C plates of different aspect ratios

r2 ¼ b/a O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 1.858 3.275 3.494 3.718 4.411 4.957

– (3.276a) (3.494) – (4.410) (4.958)

1.25 1.487 2.786 2.974 3.281 4.141 4.344

– (2.786) – (3.280) (4.140) (4.344)

1.5 1.239 2.479 2.500 3.122 3.719 3.943

– – (2.500) (3.122) – (3.944)

2.0 0.929 1.859 2.205 2.789 2.811 3.423

– – (2.206) – (2.810) (3.422)

aResults in parentheses are taken from Ref. [6].

Table 9

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for SS2-F-SS2-F plates of different aspect ratios

r2 ¼ b/a O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 1.407 2.628 3.142 3.248 3.363 3.498

(1.408a) – – – (3.364) (3.498)

1.25 1.497 2.313 2.513 3.192 3.222 3.318

(1.497) (2.312) – (3.194) (3.222) –

1.5 1.556 2.091 2.094 3.004 3.135 3.355

(1.556) – (2.092) (3.004) (3.138) –

2.0 1.571 1.624 1.866 2.628 3.059 3.142

– (1.624) (1.866) – (3.060) –

aResults in parentheses are taken from Ref. [6].

Table 10

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for SS2-C-SS2-C plates of different aspect ratios

r2 ¼ b/a O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

1.0 3.140 3.275 3.494 4.411 4.957 5.622

– (3.276a) – (4.410) (4.958) (5.622)

1.25 2.513 2.786 3.280 4.140 4.343 4.622

– (2.786) – (4.140) (4.344) –

1.5 2.094 2.500 3.121 3.943 3.999 4.014

– (2.500) – (3.944) (3.998) –

2.0 1.571 2.205 2.811 3.142 3.422 3.450

– (2.206) – – (3.422) –

aResults in parentheses are taken from Ref. [6].
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r ¼ 2700kg/m3, Poisson’s ratio is m ¼ 0.33. The corresponding modal frequencies are compared in Table 4 for the
C-C-C-F plate, and in Table 5 for C-F-C-F plate. The FEM results calculated using NASTRAN are also given
there. In both cases, the current solution matches better with the FEM data in comparison with other two solutions.
Fig. 2. The mode shapes for an SS2-C-SS2-C square plate: (a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; (f) sixth.
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There exist two distinct types of ‘simple support’ boundary conditions for the in-plane vibration of a
rectangular plate [6]. The first type of the simply supported condition specifies the zero displacement and zero
force respectively in the directions parallel and normal to an edge, which is here described by setting the
stiffnesses of the tangential and normal springs to N and 0, respectively. The second type accounts for an
exactly opposite scenario. For convenience, these two types of simply supported edge conditions are
designated by SS1 and SS2. In Ref. [9], the simple support case actually refers to the first type.

The first six frequencies, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, are given in Table 6 for simply supported plates of various

aspect ratios. Similar results are presented in Tables 7 and 8 for plates with the mixed combinations of free,
clamped and (the first type of) simply supported edges. To understand the difference between the SS1 and SS2
conditions, the problems associated with Tables 7 and 8 are re-solved by replacing the SS1 edges with SS2
while all the other parameters are kept the same. The results are presented in Tables 9 and 10. A comparison of
these two sets results has revealed the significant difference between the SS1 and SS2 boundary conditions.

For any given modal frequency, the corresponding mode shape can be readily determined from Eqs. (12)
and (13). As an example, the first six mode shapes are plotted in Fig. 2 for a square plate under SS2-C-SS2-C
boundary conditions. It can be seen that although those are the lower-order modes, they are typically more
complicated than their counterparts in the flexural vibrations; for instance, the extension-compression
deformation in one region (or mode) can quickly turn into a shear state in another region (or mode). This
characteristic, however, may have some favorable implications to the non-destructive evaluation of material
and structural parameters and monitoring of structural conditions or failures, as evidenced by the more
distinctively different modal signatures and more probing natures of the in-plane displacement fields. The
complexity of mode shapes also graphically confirms the fact that the displacement fields can no longer be
determined by the separation of variables for a plate under general boundary conditions.

Finally, consider a more complicated example in which an SS1-SS1-SS2-SS2 square plate is elastically
restrained at x ¼ 0 and y ¼ 0 in the normal direction, and at x ¼ a and y ¼ b in the tangential direction; that
is, K̄nx0 ¼ K̄ny0 ¼ K̄px1 ¼ K̄py1 ¼ K̄ and all other restraining springs are set to have an infinite stiffness. For
simplicity, all the restraining springs are assumed to have the same stiffness. The first six frequencies are
presented in Table 11 for several different spring stiffness values. The FEM results calculated using ANSYS
are also shown there as a comparison. For a very large stiffness value, this support condition will effectively
degenerate to the familiar clamped condition, as evidenced by comparing the last row in Table 11 with the first
row in Table 1. The mode shapes corresponding to K̄ ¼ 1 are plotted in Fig. 3. The results clearly show that
the normal springs at x and y ¼ 0 have played a dominant role in these modes. In other words, one has to
change the normal stiffness to effectively modify the modal properties.
4. Conclusions

A general analytical method has been developed for the in-plane vibration analysis of rectangular plates
with elastically restrained edges. Each of the in-plane displacements is sought as a standard double Fourier
Table 11

Frequency parameters, O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
, for an SS1-SS1-SS2-SS2 square plate with normal restraints at x ¼ 0 and y ¼ 0, and

tangential restraints at x ¼ a, y ¼ b, that is, K̄nx0 ¼ K̄ny0 ¼ K̄px1 ¼ K̄py1 ¼ K̄

K O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� m2Þ=E

p
1 2 3 4 5 6

0 1.314 (1.314a) 2.221 (2.221) 2.939 (2.940) 2.939 (2.940) 3.943 (3.945) 4.739 (4.743)

0.5 1.856 (1.853) 2.533 (2.532) 3.226 (3.224) 3.272 (3.275) 4.159 (4.160) 4.918 (4.921)

1 2.175 (2.171) 2.702 (2.698) 3.428 (3.424) 3.555 (3.556) 4.324 (4.324) 5.044 (5.047)

1.5 2.395 2.814 3.572 3.779 4.460 5.139

2 2.557 2.897 3.676 3.956 4.576 5.216

N 3.554 3.554 4.236 5.185 5.859 5.896

aResults in parentheses are calculated from ANSYS.
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Fig. 3. The mode shapes for an SS1-SS1-SS2-SS2 square plate elastically restrained along x ¼ 0, and y ¼ 0 in the normal directions and

along x ¼ a, and y ¼ b in the tangential directions. K̄ ¼ 1: (a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; (f) sixth.
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cosine series expansion supplemented by four auxiliary functions in the form of the product of a polynomial
and a single Fourier cosine series. These four auxiliary functions are introduced to deal with the poten-
tial discontinuities (or jumps) at the edges with the partial derivatives of the in-plane displacements
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(or equivalently, the normal and shear forces). Although the polynomials are specifically used in the current
derivations, any other closed-form functions should work as well provided they have continuous first-order
derivatives. Unlike most methods in which each of the frequency parameters has to be sought repeatedly and
iteratively from a highly nonlinear characteristic equation, all the modal parameters can now be easily
determined from solving a standard matrix eigenproblem. The excellent accuracy and convergence of the
present solution have been demonstrated through numerical examples. Of equal importance, this method has
provided a unified solution to the in-plane vibration problems in that: for different boundary conditions, (a)
the modal properties can readily be obtained by simply varying the stiffnesses of the restraining springs
accordingly and (b) the dynamic response to an applied load can be determined using an invariant set of basis
functions, which may be of importance to many applications such as fault detection and system identification.
Finally, to the best of authors’ knowledge this study appears to be the first time that an analytical solution is
derived for the in-plane vibrations of rectangular plates with elastically restrained edges.
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Appendix A. Supplementary definition

x1aðxÞ ¼ azxðzx � 1Þ2 ¼
X1
m¼0

a1m cos lamx, (A.1)

a1m ¼

a

12
; m ¼ 0;

�
2a m2p2 � 6þ 6ð�1Þm
� �

m4p4
; ma0;

8>><
>>:

x01aðxÞ ¼
x

a
� 1

	 
2
þ

2x

a

x

a
� 1

	 

¼
X1
m¼0

g1m cos lamx, (A.2)

g1m ¼

0; m ¼ 0;

4 2þ ð�1Þm½ �

m2p2
; ma0;

8<
:

x001aðxÞ ¼
4

a

x

a
� 1

	 

þ

2x

a2
¼
X1
m¼0

�1m cos lamx, (A.3)

�1m ¼

�
1

a
; m ¼ 0;

12 �1þ ð�1Þm½ �

am2p2
; ma0;

8>><
>>:

x2aðxÞ ¼
1

a
x2 x

a
� 1

	 

¼
X1
m¼0

a2m cos lamx, (A.4)

a2m ¼

�
a

12
; m ¼ 0;

2a m2p2ð�1Þm þ 6� 6ð�1Þm
� �

m4p4
; ma0;

8>><
>>:
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x02aðxÞ ¼
2

a
x

x

a
� 1

	 

þ

x2

a2
¼
X1
m¼0

g2m cos lamx, (A.5)

g2m ¼

0; m ¼ 0;

4 1þ 2ð�1Þm½ �

m2p2
; ma0;

8<
:

x002aðxÞ ¼
2

a

x

a
� 1

	 

þ

4x

a2
¼
X1
m¼0

�2m cos lamx, (A.6)

�2m ¼

1

a
; m ¼ 0;

12 �1þ ð�1Þm½ �

am2p2
; ma0;

8>><
>>:

x1bðyÞ ¼ y
y

b
� 1

	 
2
¼
X1
n¼0

b1n cos lbny, (A.7)

b1n ¼

b

12
; n ¼ 0;

�
2b n2p2 � 6þ 6ð�1Þn
� �

n4p4
; na0;

8>><
>>:

x01bðyÞ ¼
y

b
� 1

	 
2
þ 2

y

b

y

b
� 1

	 

¼
X1
n¼0

Z1n cos lbny, (A.8)

Z1n ¼

0; n ¼ 0;

4 2þ ð�1Þn½ �

n2p2
; na0;

8<
:

x001bðyÞ ¼
4

b

y

b
� 1

	 

þ

2y

b2
¼
X1
n¼0

s1n cos lbny, (A.9)

s1n ¼

�
1

b
; n ¼ 0;

12 �1þ ð�1Þn½ �

bn2p2
; na0;

8>><
>>:

x2bðyÞ ¼
1

b
y2 y

b
� 1

	 

¼
X1
n¼0

b2n cos lbny, (A.10)

b2n ¼

�
b

12
; n ¼ 0;
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8>><
>>:
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y

b

y

b
� 1

	 

þ

y2

b2
¼
X1
n¼0

Z2n cos lbny, (A.11)
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Z2n ¼

0; n ¼ 0;

4 1þ 2ð�1Þn½ �

n2p2
; na0;

8<
:

x002bðyÞ ¼
2

b

y

b
� 1

	 

þ

4y

b2
¼
X1
n¼0

s2n cos lbny, (A.12)

s2n ¼

1

b
; n ¼ 0;

12 �1þ ð�1Þn½ �

bn2p2
; na0;

8>><
>>:

sin lamx ¼
X

p

tm
ap cos lapx ¼ sin lapx ¼

X
m

tp
am cos lamx, (A.13)

p ¼ 0; tp
am ¼ 0,

pa0; tp
am ¼

m ¼ 0;
1� ð�1Þp

pp
;

ma0;

m ¼ p; 0 ;

map;
2p ð�1Þmþp

� 1
� �
ðm2 � p2Þp

;

8>><
>>:

8>>>>>>>><
>>>>>>>>:

sin lbny ¼
X

q

kn
bq cos lbqy ¼ sin lbqy ¼

X
n

kq
bn cos lbny, (A.14)

q ¼ 0; kq
bn ¼ 0,

qa0; kq
bn ¼

n ¼ 0;
1� ð�1Þq

qp
;

na0;

n ¼ q; 0;

naq;
2q ð�1Þnþq

� 1
� �
ðn2 � q2Þp

:

8><
>:

8>>>>>><
>>>>>>:

Appendix B. Additional definitions

To show the structures of the coefficient matrices in Eqs. (34) and (35), the elements which are derived from
the (m+1)th equation of Eq. (21) are given below:

for m0 ¼ 0; 1; 2; . . . ;M ; n0 ¼ 0; 1; 2; . . . ;N,

fa11gmþ1;m0þ1 ¼ dmm0 ; fb12gmþ1;m0þ1 ¼ 0, (B.1,B.2)

fc13gmþ1;n0þ1 ¼ �Kpy0a1m; fd14gmþ1;n0þ1 ¼ �Kpy0a2m, (B.3,B.4)

fe15gmþ1;m0þ1 ¼ 0; ff16gmþ1;m0þ1 ¼ 0, (B.5,B.6)

fg17gmþ1;n0þ1 ¼ g1m; fh18gmþ1;n0þ1 ¼ g2m. (B.7,B.8)
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Two new indices, s ¼ m(N+1)+n+1 and t ¼ m0(N+1)+n0+1, are defined here to simplify the following
notations:

fq11gmþ1;t ¼ Kpy0dmm0 ; fq12gmþ1;t ¼ lam0tm0

am. (B.9,B.10)

The elements of the coefficient matrices in Eq. (42) which correspond to the sth equation of Eq. (40) can be
expressed as

fA11gs;t ¼ l2am þ
1� m
2

l2bn

� �
dst; fA12gs;t ¼ �

1þ m
2

lam0lbn0tm0

amk
n0

bn, (B.11,B.12)

fB11�ags;m0þ1 ¼ b1nl
2
am �

1� m
2

s1n

� �
dmm0 , (B.13)

fB11�bgs;m0þ1 ¼ b2nl
2
am �

1� m
2

s2n

� �
dmm0 , (B.14)

fB11�cgs;n0þ1 ¼
1� m
2

a1ml
2
bn � �1m

� �
dnn0 , (B.15)

fB11�dgs;n0þ1 ¼
1� m
2

a2ml
2
bn � �2m

� �
dnn0 , (B.16)

fB12�egs;m0þ1 ¼
1þ m
2

Z1nlam0tm0

am, (B.17)

fB12�fgs;m0þ1 ¼
1þ m
2

Z2nlam0tm0

am, (B.18)

fB12�ggs;n0þ1 ¼
1þ m
2

g1mlbn0kn0

bn, (B.19)

fB12�hgs;n0þ1 ¼
1þ m
2

g2mlbn0kn0

bn, (B.20)

fE11gs;t ¼ dst; fE12gs;t ¼ 0, (B.21,B.22)

fF11�ags;m0þ1 ¼ b1ndmm0 ; fF11�bgs;m0þ1 ¼ b2ndmm0 , (B.23,B.24)

fF11�cgs;n0þ1 ¼ a1mdnn0 ; fF11�dgs;n0þ1 ¼ a2mdnn0 , (B.25,B.26)

fF12�egs;m0þ1 ¼ 0; fF12�fgs;m0þ1 ¼ 0, (B.27,B.28)

fF12�ggs;n0þ1 ¼ 0; fF12�hgs;n0þ1 ¼ 0. (B.29,B.30)
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